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Abstract—The resistive wall instability results from the 

Lorentz force on the beam due to the beam image charge and 
current. If the beam pipe is perfectly conducting, the electric 
force due to the image charge attracts the beam to the pipe wall, 
and, the magnetic force due to the image current repels the beam 
from the wall. For a relativistic beam, these forces almost cancel, 
leaving a slight attractive force, which is easily overcome by 
external magnetic focusing. However, if the beam pipe is not 
perfectly conducting, the magnetic field due to the image current 
decays on a magnetic-diffusion time scale. If the beam pulse is 
longer than the magnetic diffusion time the repulsion of the beam 
tail will be weaker than the repulsion of the beam head. In the 
absence of an external focusing force, this causes a head-to-tail 
sweep of the beam toward the wall. This instability is usually 
thought to be a concern only for long-pulse relativistic electron 
beams. However, with the advent of multi-pulse, high-current 
linear induction accelerators (LIAs) the possibility of pulse-to-
pulse coupling of this instability should be investigated. We have  
explored pulse-to-pulse coupling using the LAMDA beam 
dynamics code, and we present results of this investigation.  
 

Index Terms—Intense relativistic electron beams, Electron 
beam instabilities, Linear induction accelerators 
 

I. INTRODUCTION 
HE resistive wall instability is usually thought to be a 
concern only for long-pulse relativistic electron beams [1, 

2, 3, 4]. However, with the advent of multi-pulse, high-current 
linear induction accelerators (LIAs) [5, 6, 7, 8, 9] the 
possibility of pulse-to-pulse coupling of this instability should 
be investigated. In earlier papers [10, 11] estimates of 
instability growth in drift transport regions of multi-pulse 
machines were based on analytic theory.  A quantitative 
examination of the pulse-to-pulse coupling phenomenon using 
direct simulation of the forces on the beam is the thrust of this 
article. 
 The instability results from the Lorentz force on the beam 
due to the beam images charge and current in the conducting 
beam pipe. If the pipe is perfectly conducting, the electric 
force due to the image charge attracts the beam to the pipe 
wall. However, the magnetic force due to the image current 
repels the beam from the wall. For a relativistic beam, these 
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forces almost cancel, leaving an attractive force equal to 21/ γ  
times the image charge force, where γ  is the Lorentz 
relativistic mass factor. However, if the beam pipe is not 
perfectly conducting, the magnetic field due to the image 
current decays on a time scale dτ σ∝ , where σ is the pipe 
conductivity. Thus, if the beam pulse length pτ  is greater than 

dτ  the magnetic repulsion of the beam tail will be weaker than 
the repulsion of the beam head. In the absence of an external 
focusing force, this causes a head-to-tail sweep of the beam 
toward the wall. This sweep grows as the beam propagates 
down the pipe. The strong external focusing force provided by 
the solenoidal magnetic fields of an LIA complicate this 
simple picture, but generally do provide significant 
suppression of instability growth.  
 For a constant-current coasting beam the time-varying 
electromagnetic fields produced by the conducting-wall 
images of a beam displaced a distance ( )tξ   from the 
centerline were derived in [2]. These fields are proportional to 

( )tξ , and for early times, the resulting radial force on the 
beam toward the wall is approximately  
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 where e  is the electron charge, I  is the beam current, b  is 

the beam pipe radius, 2 1bγ γ= −  is the normalized electron 
momentum [3]. Except where noted, cgs units are used in this 
article. The first term is the force that would be applied for a 
perfectly conducting wall, and the integral term represents the 
decay of the magnetic repulsion due to diffusion of the dipole 
field. Adding a uniform axial magnetic field, B , results in the 
equation of motion given in [3]; 
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where m is the electron mass, and  the betatron wavenumber is
-1/ 2 / 3.4 cmkGk eB mc Bb bγ bγ= = . 
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Eq. (2) is immediately recognized as a wakefield  equation. 
That is, the transverse force on every beam electron is due to 
the conducting tube wall images of the preceding electrons, 
but not of those following it (due to relativistic causality) [12]. 
Thus, the transverse force on the last electron in the pulse is 
due to the images of all of the rest of the electrons preceding it 
in the pulse. It follows that an electron in a second pulse 
following the first is also subject to a transverse forces due to 
images of all of the electrons preceding it, including those in 
the first pulse. This is pulse-to-pulse coupling. The reductio ad 
absurdum is; if there is no gap between the two pulses, this 
case is indistinguishable from a single pulse of greater length 
than the first.  

The analytic theory of [3] does not account for time varying 
currents, and so cannot explore pulse-to-pulse coupling. Nor 
does it account for accelerated beams in non-uniform 
magnetic focusing fields, as occur in a real accelerator. 
Therefore, we use the beam dynamics code LAMDA (Linear 
Accelerator Model for DARHT) [13] for this investigation. 

 

II. SIMULATIONS 
To simulate the motion of a beam, LAMDA subdivides it 

into many disks of length τ and applies the fundamental 
equation of motion 
 
d e
dt c

 = − +  

p vE ×B   (3) 

to each disk. Cartesian coordinates are used for the centroid 
motion calculations. The electromagnetic fields include those 
due to external focusing and wall images, as well as higher 
order corrections for beam diamagnetism and curvature of its 
trajectory [14]. The resistive wall instability algorithm breaks 
the beam pipe up into segments much shorter than the beam 
disks, resolves the force given by Eq. (1) into its Cartesian 
components, and applies an impulse to each beam disk equal 
to the force multiplied by the time for the disk to traverse the 
short pipe segment [13].  

Moreover, the developers of LAMDA accommodated time 
varying currents by recognizing that, as derived in [2], the 
image fields are proportional to ( ) ( )t I tξ  without loss of 
generality. Thus, as implemented in LAMDA, the integrand in 
Eq. (1) is proportional to /I tξ∂ ∂  , rather than / tξ∂ ∂ . This 
feature enables calculations for time varying currents, and in 
particular, multiple beam pulses.    

A.  Region of Applicability 
As previously noted, the image electromagnetic fields 

giving rise to the force equation (1) are an approximation, 
which is only valid for early times.  Thus, the LAMDA 
simulations are only applicable for times 2 2

1 4 /t cτ σ<< = ∆  
and dt τ<<  [2] , where dτ  is the dipole field decay time

22 /d b cτ πσ= ∆  in a thin-walled non-magnetic beam pipe of 
inner radius b  and thickness ∆  [15]. Since beam pipes 
usually have wall thickness ∆  less than b , the second of 

these relations is automatically satisfied if the first is.  For 
example, a stainless steel ( 16 11.15 10 sσ −= ×  ) pipe with 15-
cm ID and 0.32-cm wall has 1 5 μsτ ≈ . This pipe size is rather 
typical for short-pulse LIAs, and is used for many of the 
simulations in this article. In this pipe, LAMDA predictions 
for short pulses < 100 ns are well within the limitations of the 
theory, but only marginally so for pulses as long as 2-3 ms.  

B. Single Pulse 
We first use LAMDA to illustrate the nature of the 

instability by considering a 10-MeV, 2-kA, 1-ms pulse 
coasting through a 7.5-cm radius stainless-steel beam pipe in a 
uniform 500-G magnetic guide field. A key result of the 
analytic theory is that the characteristic distance for significant 
growth is  
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where τ  is time into the pulse measured back from the head, 
and the units for the parameters are indicated by the subscripts 
[3]. Here, the space-charge reduced betatron wavelength 0k  is 
defined by 
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Worth noting is the strong dependence of the characteristic 
distance on the size of the beam pipe; 3

gz b∝ , which favors 
large beam pipes for long-pulse machines. LAMDA 
simulations follow this scaling law (see Appendix A). 

For our illustrative beam pulse, 70 mgz = , so we choose 
that distance as the beam pipe length in order to observe the 
growth of the instability. The entire beam pulse is attracted 
toward the wall by the images, but the beam tail more so than 
the beam head, because of the weakening magnetic image. 
The 500-G guide field is enough to suppress the motion of the 
beam head. To show this, in Fig. 1 we compare the instability 
amplitude at the beam tail (τ  = 1000 ns) as a function of 
distance with the amplitude at 50 ns into the pulse (which 
would also be the tail amplitude for a 50-ns pulse).  
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Fig. 1. LAMDA simulation of single-pulse resistive wall 
instability amplitude for a 2-kA, 10-MeV coasting beam in a 
500-G uniform guide field. (red) Tail of 1.0 ms pulse (black) 
50-ns into pulse. 
 

Since the experimenter will be interested in how this 
instability might appear in data, we also show the trajectory of 
the beam centroid during the pulse as it might appear in data 
from a beam position monitor (BPM) at the end of the 70-m 
pipe [16]. In Fig. 2 it is seen that the manifestation of this 
instability is a slow head-to tail radial drift toward the wall 
impressed on the cycloidal F ×B  drift. The azimuthal location 
of the beginning of drift locus is simply the phase advance, 

0k z . 

 
Fig. 2. LAMDA simulation of beam transverse motion at the 
end of the 70-m pipe as it might appear in BPM data for a 
beam with an initial 1-cm offset in x. 
 

An important property of this instability in a strong 
magnetic guide field is that the head-to-tail growth of the 
instability is nearly independent of beam energy. According to 
Eq. (5), 0k  is almost inversely proportional to γ , especially 
for high energy. It follows from Eq. (4) that gz  is almost 

independent of γ . The significance of this is that results for a 
coasting beam can be generalized to an accelerated beam. 
Moreover, this property is useful for experimentally 
distinguishing between corkscrew motion [17, 18], which can 
be strongly correlated with beam energy variations, and 
resistive wall instability, which is not [16, 19].  

This energy independence is clearly seen in LAMDA 
simulations. Fig. 3 shows the displacement of the tail of the 
pulse as a function of distance, as in Fig. 1. The three curves 
plotted are for 5-MeV, 10-MeV, and 15-MeV. The 
displacement at the end of the pipe is nearly independent of 
beam energy. In Fig. 4, we compare the centroid trajectories as 
might be measured with a BPM at the end of the pipe. Other 
than the phase shift, there is little to distinguish these 
trajectories, again showing insensitivity to beam energy.  

 

 
Fig. 3. LAMDA simulation of resistive wall instability 

amplitude for a 2-kA coasting beam in a 500-G uniform guide 
field. (blue)  5-MeV beam energy (red)  10-MeV beam energy 
(green)  15-MeV beam energy 

 
Fig. 4. LAMDA simulation of beam transverse motion at the 
end of the 70-m pipe for different beam energies. (blue)  5-
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MeV beam energy (red)  10-MeV beam energy (green)  15-
MeV beam energy. 
 

C. Multiple Pulse 
In order to demonstrate the coupling of the resistive wall 

instability in multiple pulses we first consider two 2-kA, 10-
MeV pulses with a 100-ns flattop and 10-ns rise and fall times. 
The beam pipe is the same as used for single-pulse 
simulations, but the transport magnetic field has been reduced 
to  200 G to enhance the growth in order to clearly 
demonstrate the effect.   

First, consider the two pulses as close together as possible 
(Fig. 5). This is almost the same as a single pulse with twice 
the length. Next consider the second pulse substantially 
delayed as shown in Fig. 6. 

 
Fig. 5. Double pulse format with closely coupled pulses. The 

arrows mark the times for which amplitude is plotted in Fig. 7. 
 

 
Fig. 6. Double pulse format with widely separated pulses. 

The arrows mark the times for which amplitude is plotted in 
Fig. 7. 

 
  
In Fig. 7 we compare the amplitude as a function of distance 

for the first pulse at the end of its flattop ( 1τ  = 110 ns) with 
the amplitude of the second pulse at the end of its flattop ( 2τ  
= 110 ns). The extra growth at the tail of the second pulse is 
due to the image fields of the first pulse, which are strongest 
when the second pulse begins immediately after the first pulse 
ends (delay = 0 ns). As the second pulse is further delayed, the 

field due to the first pulse weakens, and the extra growth is 
less. These simulations clearly show the pulse-to-pulse 
coupling of the instability. 

 
 
Fig. 7. LAMDA simulation of instability amplitude on two 

pulses. Amplitude was calculated at times shown by markers 
in Fig. 5 and Fig. 6. (black) Amplitude at end of first pulse. 
(red) Amplitude at end of second pulse with pulses closely 
coupled as shown in Fig. 5. (green) Amplitude at end of 
second pulse with pulses widely separated as shown in Fig.6. 

 
Finally, we study the coupling effect as it might manifest in 

a real multi-pulse LIA. For example, consider a hypothetical 
accelerator with a 2-kA, 2-MeV multi-pulse injector that 
accelerates the beam to 20-MeV through 72 cells. The 250-kV 
cells are grouped in blocks of 4 cells each, with vacuum 
pumping in between. Using solenoidal magnetic focusing 
optimized to suppress beam-breakup while minimizing 
corkscrew motion would result in the field shown in Fig 8, 
where the field strength varies as γ  [20], and the initial field 
is strong enough to stabilize the image displacement instability 
[21, 22, 20].      

 

 
Fig. 8. Solenoidal magnetic field on axis needed to suppress 

beam breakup in a 2-kA, 20-MeV LIA. The increase in field 
strength with distance is optimized to minimize corkscrew 
motion according to [20]. 
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Fig.9. Four-pulse format of the injected electron beam. 

Arrows indicate the times for which the instability amplitude 
was calculated. 

 
Now, consider the 4-pulse format shown in Fig. 9 for the 

injected beam. Each pulse has a 50-ns flattop, and 10-ns rise 
and fall. They are separated by 200 ns. This pulse train is less 
than 1ms in duration, so barely within the constraints of the 
theory. Fig. 10 shows LAMDA calculations of the resistive 
wall instability amplitude at the times shown by the markers in 
Fig. 9. Although there is slight evidence of coupling, the 
magnetic focusing field of Fig. 8 is strong enough that the 
instability is damped and the beam focused toward the axis. 
Thus, pulse-to-pulse coupling is not expected to be a problem 
in any real multi-pulse LIA having similar parameters. 

 

 
Fig. 10. LAMDA simulation of the instability attenuation 

due to the strong magnetic focusing shown in Fig. 8. (black) 
Tail of pulse #1. (red) Tail of pulse #2. (green) Tail of pulse 
#3. (blue) Tail of pulse #4. 

 
  
 
On the other hand, the situation can be quite different in the 

downstream transport of the beam from the accelerator to the 
experimental area. This beamline might be quite long, with 
few focusing magnets and long drifts where there is no 

magnetic field to suppress the instability. For example, Fig. 11 
shows the magnetic focusing in the downstream transport 
beamline of the short-pulse LIA in operation at the Los 
Alamos  National Laboratory [23, 24, 25]. If the four 2-kA, 
20-MeV pulses were to be transported through this beamline 
the instability amplitude would grow as shown in Fig. 12. 
Here, the pulse-to-pulse coupling is very evident, and it would 
cause a spread in the positions of the focal spots, as well as a 
smear of the spot sizes.  

Fortunately, this problem can be mitigated by using a 
downstream beam pipe made of higher conductivity material, 
such as aluminum or copper alloy. Fig. 13 shows the 
calculated amplitude and coupling resulting from the use of 
aluminum alloy pipe ( 17 12.0 10 sσ −= × ) instead of stainless 
steel. By comparing Fig. 12 and Fig. 13, it is evident that a 
significant reduction of spread between the amplitude of pulse 
#1and amplitude of pulse #4 results from this substitution of 
materials. An additional benefit of using higher conductivity 
materials is that it substantially enlarges the regime of 
applicability of the theory. For example, switching from 
stainless steel to aluminum alloy changes 1τ  from 1 5 μsτ =  to 

1 87 μsτ =  , so LAMDA predictions for pulse trains as long as 
2 or 3 ms would be well within the constraints of the theory. 

 
Fig. 11. Solenoidal magnetic focusing fields in the 

downstream transport beamline of the short-pulse LIA at Los 
Alamos National Laboratory.  
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Fig. 12. LAMDA simulated instability growth on the tails 

of the four pulses shown in Fig. 9. Beam transported through 
the downstream beamline shown in Fig. 11 with stainless steel 
beam pipe. Amplitude was calculated at the times marked in 
Fig. 9. (black) Tail of pulse #1. (red) Tail of pulse #2. (green) 
Tail of pulse #3. (blue) Tail of pulse #4. 

 
 

 
Fig. 13. LAMDA simulated instability amplitude on the 

tails of the four pulses shown in Fig. 9. Beam transported 
through the downstream beamline shown in Fig. 11, but using 
aluminum alloy beam pipe. Amplitude was calculated at the 
times marked in Fig. 9. (black) Tail of pulse #1. (red) Tail of 
pulse #2. (green) Tail of pulse #3. (blue) Tail of pulse #4. 

 
Of course, another option for mitigation is to use a larger 

beam pipe. To obtain the same reduction in growth as 
switching to aluminum would only require increasing the 
beam pipe size by ~60% (to 12 cmb = ). This is very close to 
the standard vacuum tubing size having 12.3 cmb = , so 
switching to this size should provide as much suppression as 
does the use of aluminum. 

III. CONCLUSIONS 
Computer simulations with the LAMDA beam dynamics 

code have demonstrated pulse-to-pulse coupling of the 
resistive wall instability. The magnetic guide fields in high-

current LIAs are generally strong enough to suppress this 
effect. 

 Pulse-to-pulse coupling can be especially troublesome in 
the downstream transport of the beam from the accelerator to 
an experimental area. These transport beamlines generally 
have long drifts with no magnetic field, so the growth of the 
instability, and of coupling, can be significant. If it is expected 
to be a problem with stainless steel pipe, then it can be 
mitigated through the use of more highly conducting beam 
pipes made from aluminum or copper alloys. This substitution 
also extends the regime of applicability by more than an order 
of magnitude.  Alternatively, increasing the size of the beam 
pipe is an especially effective mitigation measure, because the 
characteristic distance for significant growth is proportional to 
the cube of the pipe size. 

What is missing from this discussion is experimental 
validation of the theory, and we are exploring opportunities to 
do just that.  

APPENDIX A 
The growth of the resistive hose instability as simulated by 

LAMDA is nearly exponential with distance. In this Appendix 
we use LAMDA simulations to deduce the e-folding lengths 
quantifying this exponential growth. The e-folding length is a 
function of the parameters of the physical situation; beam 
current and pulse width, electron energy, pipe size and 
conductivity, and magnetic guide field. To determine how the 
e-folding length scales with these parameters, we are guided 
by the characteristic lengths dimensionally deduced in [3]. 
Since the parametric scaling of those analytic characteristic 
lengths are dimensionally correct, showing that LAMDA e-
folding lengths have the same scaling provides some 
validation of the physical reality of the simulations.  

Characteristic lengths for instability growth were given in 
[3] for the case of continuous magnetic focusing, and also for 
the case of just enough magnetic focusing to exactly cancel 
the beam space-charge defocusing, i.e., 0 0k = . We use the 
parametric scaling of these analytic lengths in what follows. 

A. No Magnetic Guide Field 

Although no analytic scaling law is given in [3] for the 
situation where there is no magnetic guiding field ( 0kb = ), 
the authors did use dimensional analysis to estimate a 
characteristic growth length for 0 0k = , in which case there 
are no terms proportional to ξ  in Eq. (2). As derived by the 
authors of [3], this characteristic length is 

1

1/4 3/21/2

1/2 1/4 17

3.8 m
1010

s cm
g

kA s

b
I m

σγ
τ

−   ≈    
  

   (6) 
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 As verified with LAMDA simulations, the 0 0k =  
parametric scaling of growth length also holds for the zero 
field case, at least in the parameter range of interest for linear 
induction accelerators explored here.  

As shown in Fig. A1, with no magnetic field the instability 
grows nearly exponentially, ( )0 0/ exp /zξ ξ z≈ . The e-

folding length 0z  is a function of the parameters of the 
problem, such as beam current, energy, and pulsewidth; as 
well as beam-pipe size and material. To verify that the 0 0k =
parametric scaling also holds for the zero field case ( 0kb = ), 
we varied the parameters in the range shown in Table I (with 
B = 0), and plotted the amplitude 0/ξ ξ  at 20 m as a function 
of the variable  

1

1/2 1/4
-1

0 1/2 3/2 16 m
(10 )

kA s

cm s

I
p

b
mτ

γ σ −
−=   (7) 

Thus, if the characteristic length scaling given by Eq. (6)  is 
valid for these simulations, a semi-log plot should follow a 
straight line, as it does, as shown in Fig. A2. From the slope of  
a least squares fit to these data one gets the e-folding length 

0z   
 

1
1/2 3/2 16 1/4

0 1/2 1/4

( /10 )
0.0799 mcm s

kA s

b
I m

γ σ
z

τ
−

=   (8) 

Comparing Eq. (8) with Eq. (6) shows that the e-folding 
length 0z is about 20% greater than the characteristic length 

g  derived in [3]. Thus, past use of g as a predictor of 
resistive wall problems [26] has been a conservative approach. 

 
Fig. A1:  LAMDA simulation of growth of the tail of a 1-ms, 
2-kA, 10-MeV beam pulse in a 5-cm radius stainless steel tube 
with no magnetic guide field.  
 
 

 

Fig. A2: Amplitude at 20 m for LAMDA simulations in which 
parameters were varied over ranges given in Table I with B=0. 
The red line is a least squares fit to the data, which yields the 
constant in Eq. (8). 
 
 
 
 
Table I. Parameter Variations for Scaling Simulations 
 
Parameter  Unit min max nominal 
Pipe Radius b  cm 4 16 5 
Conductivity σ  s-1 3.16E15 6.4E17 1.0E16 
Magnetic Field B  kG 0.3 1.5 0.5 
Beam Current I  kA 0.5 4.0 2.0 
Electron Energy KE   MeV 5 20 10 
Pulse Length τ  ms 0.125 4.0 1.0 

 

B. Continuous Magnetic Guide Field 

The parametric scaling of the characteristic growth length in a 
magnetic guide field is given by (Eq. (4)). Using this as 
guidance, we define the variable 

1
3 1610

kA s
B

kG cm s

I
p

B b
mτ

σ −
−

=   (9) 

A semi-log plot of the nominal case given in Table I shows 
that in a magnetic field the instability also grows nearly 
exponentially with distance, ( )0/ exp / Bzξ ξ z≈  (see Fig. A3) 
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 The parameters in Table I were varied, and the growth at 
100 m was plotted as a function of Bp   (Fig. A4). It is clear 
that LAMDA simulations closely follow this scaling law for 
exponential growth of the instability, with an e-folding 
distance given by 

       
1

3 1610
0.98 kG cm s

B
kA s

B b

I m

σ
z

τ

−
−

=         (10) 

The e-folding length Bz    has the same parametric scaling as 

gz  in Eq. (4) if 0k kb≈  , which is true for all of the cases 
simulated. 

 

Fig. A3: LAMDA simulation of instability amplitude at the 
end of a 1-ms pulse as a function of distance. Parameters for 
this simulation are those given in the nominal column of Table 
I. The black curve is the result of the simulation. The red 
curve has smoothed out the betatron oscillations via localized 
regression. 

As deduced from these LAMDA simulations, the e-folding 
length Bz  is about 1.7 times longer than the analytical 
characteristic length for growth gz , so using gz  to estimate 
the effect of this instability in a given accelerator architecture 
[22] is a very conservative approach. 

 

 

Fig. A4: Instability amplitude at 100 m as a function of 
parametric variations summarized by the variable 

8 310 / /Bp I Bbτ σ= . Each symbol is the result of a 
LAMDA simulation with different values of the parameters. 
The red line is a least square fit to the data, which yields the 
constant in Eq. (10).. 

 ACKNOWLEDGMENTS 
The author thanks his colleagues at Los Alamos and 

elsewhere for enlightening discussion about high-power 
accelerator physics. Special recognition is due C. B. Mostrom 
and C. Thoma at Voss Scientific and T. H. Hughes at Sandia 
National Laboratory for their expert advice on the LAMDA 
beam dynamics code.  

REFERENCES 
 
 
[1]  L. J. Laslett, V. K. Neil and A. M. Sessler, "Transverse 

resistive instabilities of intense coasting beams in particle 
accelerators," Rev. Sci. Instrum., vol. 36, no. 4, pp. 436 - 
448, 1965.  

[2]  S. Bodner, V. K. Neil and L. Smith, "Decay of image 
currents and some effects on beam stability," Part. 
Accel., vol. 1, pp. 327 -334, 1970.  

[3]  G. J. Caporaso, W. A. Barletta and V. K. Neil, 
"Transverse resistive wall instability of a relativistic 
electron beam," Part. Accel., vol. 11, pp. 71 - 79, 1980.  

[4]  D. H. Whittum, A. M. Sessler and V. K. Neil, 
"Transverse resistive wall instability in the two-beam 
accelerator," Phys. Rev. A, vol. 43, no. 1, pp. 294 - 303, 
1991.  

[5]  R. J. Briggs, D. L. Birks, D. S. Prono, D. Prosnitz and L. 
L. Reginato, "Induction linac-based FELs," in Part. 
Accel. Conf., 1987.  

[6]  C. J. Lasnier, S. L. Allen, B. Felker and et al., "Burst 
mode FEL with the ETA-III induction linac," in Part. 
Accel. Conf., 1993.  



TPS9498.R2 9 

[7]  G. Westenskow, G. Caporaso, Y.-J. Chen, T. Houck and 
S. Sampayan, "Double pulse experiment with a velvet 
cathode on the ATA injector," in Part. Accel. Conf., 
1996.  

[8]  S. Chen, X. Li, Z. Huang and et al., "Output of triple-
pulse megahertz burst rate high-voltage induction 
device," Appl. Phys. Lett., vol. 88, pp. 264107-1 - 
264107-2, 2006.  

[9]  J. J. Deng, J. S. Shi, W. P. Xie and et al., "R&D status of 
high-current accelerators at IFP," J. Korean Phys. Soc., 
vol. 59, no. 6, pp. 3619 - 3622, Dec. 2011.  

[10]  Y.-J. Chen, L. R. Bertolini, G. J. Caporaso and et al., 
"Downstream system for the second axis of the DARHT 
facility," in LINAC, Gyeongju, Korea, 2002.  

[11]  Y.-J. Chen, L. Bertolini, G. J. Caporaso, D. D.-M. Ho, J. 
F. McCarrick, A. C. Paul, P. A. Pincosy, B. R. Poole, L.-
F. Wang and G. A. Westenskow, "Downstream transport 
system for the second axis of the Dual-Axis Radiographic 
Hydrodynamic Test facility," in 14th Int. Conf. High-
Power Particle Beams, Albuquerque, NM, USA, 2002.  

[12]  G. V. Stupakov, "Wakefields and instabilities in linacs," 
in Int. School on Part. Accel., Long Beach, CA, USA, 
2002.  

[13]  T. P. Hughes, C. B. Mostrom, T. C. Genoni and C. 
Thoma, "LAMDA user's manual and reference," Voss 
Scientific Report, VSL-0707, 2007. 

[14]  T. Genoni, T. Hughes and C. Thoma, "Improved 
envelope and centroid equations for high current beams," 
in AIP Conf. Proc., 2002.  

[15]  C. Ekdahl, "Transient decay of beam-produced fields in 
thin walled tubes," J. Appl. Phys., vol. 89, no. 12, pp. 
8214 - 8218, 2001.  

[16]  C. Ekdahl and et al., "Suppressing beam motion in a 
long-pulse linear induction accelerator," Phys. Rev. ST 
Accel. Beams, vol. 14, p. 120401, 2011.  

[17]  Y.-J. Chen, "Corkscrew modes in linear induction 
accelerators," Nucl. Instrum. Methods Phys. Res., vol. 
A292, pp. 455 - 464, 1990.  

[18]  Y.-J. Chen, "Transverse beam instability in a compact 
dielectric wall induction accelerator," in Proc. 21st 
Particle Accel. Conf., Knoxville, TN, USA, 2005.  

[19]  C. Ekdahl and et al., "Electron beam dynamics in a long-
pulse linear induction accelerator," J. Korean Phys. Soc., 
vol. 59, pp. 3448 - 3452, 2011.  

[20]  G. J. Caporaso and Y. -J. Chen, "Electron Induction 
Linacs," in Induction Accelerators, K. Takayama and R. 
J. Briggs, Eds., New York, Springer, 2011, pp. 117 - 163. 

[21]  C. H. Woods, "The image instability in high current 
linear accelerators," Rev. Sci. Instrum., vol. 41, no. 7, pp. 
959 - 962, 1970.  

[22]  C. Ekdahl, "Electron-beam dynamics for an advanced 
flash-radiography accelerator," IEEE Trans. Plasma Sci., 
vol. 43, no. 12, pp. 4123 - 4129, Dec. 2015.  

[23]  M. J. Burns, B. E. Carlsten, T. J. T. Kwan and et al, 
"DARHT accelerators update and plans for initial 
operation," in Part. Accel. Conf., New York, 1999.  

[24]  C. Ekdahl, "Modern electron acccelerators for 
radiography," IEEE Trans. Plasma Sci., vol. 30, no. 1, 
pp. 254-261, 2002.  

[25]  K. Peach and C. Ekdahl, "Particle radiography," Rev. 
Acc. Sci. Tech., vol. 6, pp. 117 - 142, 2013.  

[26]  Y.-J. Chen and A. C. Paul, "Physics design 
considerations of Diagnostic X beam transport system," 
in 20th Int. Linac Conf., Monterey, CA, USA, 2000.  

 

 


	I. INTRODUCTION
	II. Simulations
	A.  Region of Applicability
	B. Single Pulse
	C. Multiple Pulse

	III. Conclusions
	Computer simulations with the LAMDA beam dynamics code have demonstrated pulse-to-pulse coupling of the resistive wall instability. The magnetic guide fields in high-current LIAs are generally strong enough to suppress this effect.
	Pulse-to-pulse coupling can be especially troublesome in the downstream transport of the beam from the accelerator to an experimental area. These transport beamlines generally have long drifts with no magnetic field, so the growth of the instability,...
	What is missing from this discussion is experimental validation of the theory, and we are exploring opportunities to do just that.

	Appendix A
	The growth of the resistive hose instability as simulated by LAMDA is nearly exponential with distance. In this Appendix we use LAMDA simulations to deduce the e-folding lengths quantifying this exponential growth. The e-folding length is a function o...
	Characteristic lengths for instability growth were given in [3] for the case of continuous magnetic focusing, and also for the case of just enough magnetic focusing to exactly cancel the beam space-charge defocusing, i.e.,. We use the parametric scali...
	A. No Magnetic Guide Field
	Although no analytic scaling law is given in [3] for the situation where there is no magnetic guiding field (), the authors did use dimensional analysis to estimate a characteristic growth length for , in which case there are no terms proportional to ...
	As verified with LAMDA simulations, the  parametric scaling of growth length also holds for the zero field case, at least in the parameter range of interest for linear induction accelerators explored here.
	As shown in Fig. A1, with no magnetic field the instability grows nearly exponentially, . The e-folding length  is a function of the parameters of the problem, such as beam current, energy, and pulsewidth; as well as beam-pipe size and material. To ve...
	Fig. A2: Amplitude at 20 m for LAMDA simulations in which parameters were varied over ranges given in Table I with B=0. The red line is a least squares fit to the data, which yields the constant in Eq. .
	B. Continuous Magnetic Guide Field
	The parametric scaling of the characteristic growth length in a magnetic guide field is given by (Eq. ). Using this as guidance, we define the variable
	The parameters in Table I were varied, and the growth at 100 m was plotted as a function of   (Fig. A4). It is clear that LAMDA simulations closely follow this scaling law for exponential growth of the instability, with an e-folding distance given by
	The e-folding length    has the same parametric scaling as  in Eq.  if  , which is true for all of the cases simulated.
	Fig. A3: LAMDA simulation of instability amplitude at the end of a 1-s pulse as a function of distance. Parameters for this simulation are those given in the nominal column of Table I. The black curve is the result of the simulation. The red curve ha...
	As deduced from these LAMDA simulations, the e-folding length  is about 1.7 times longer than the analytical characteristic length for growth , so using  to estimate the effect of this instability in a given accelerator architecture [22] is a very con...
	Fig. A4: Instability amplitude at 100 m as a function of parametric variations summarized by the variable . Each symbol is the result of a LAMDA simulation with different values of the parameters. The red line is a least square fit to the data, which ...
	Acknowledgments
	References

